

In Situ and Ex Situ Treatment Technologies for 1,4-Dioxane

Patrick Hicks, Ph.D. Technical Sales Manager SE PeroxyChem

June 2019

- 1,4-Dioxane is not PFAS or GenX
 - Conventional destructive treatment options
 - Sorptive treatment options
 - Emerging treatment options
- 1,4-Dioxane
 - Present in many waste streams including wastewater
 - This presentation will tend to focus on treatment at environmental sites

Why is 1,4-Dioxane Special?

- 1,4-Dioxane REALLY likes water
 - Miscible in water
 - Polar compound
 - Once in water, it wants to stay there (partitioning coefficients):
 - Negative Log K_{ow} (-0.27)
 - Low Henry's Coef (4.8 x 10⁻⁶ atm m³/mole)
- 1,4-Dioxane is often co-mingled with other contaminants that have very different characteristics
 - Trichloroethene (TCE)
 - 1,1,1-Trichloroethane (1,1,1-TCA)

N.X.	<u> </u>

Soil-Groundwater Partitioning

- While primarily associated with groundwater, 1,4-dioxane has a low affinity for organic carbon
- Assuming $F_{\rm oc}$ of 0.005 (5,000 mg/Kg)
 - 1,4-Dioxane is primarily in the aqueous phase
 - Other contaminants are primarily sorbed to soil

$$K_d = K_{oc} * F_{oc}$$

Contaminant	Contaminant Distribution (%)				
	GW	Soil			
1,4-Dioxane	70%	30%			
PCE	21%	79%			
TCE	19%	81%			
DCE	51%	49%			
1,1,1-TCA	27%	73%			
1,1-DCA	43%	57%			
1,2-DCA	51%	49%			
Carbon Tetrachloride	19%	81%			
1,2-Dichlorobenzene	6%	94%			
Benzene	40%	60%			
Toluene	18%	82%			

😢 PeroxyChem

Treatment Technologies

Remedial technologies typically exploit some aspect of the contaminant:

- Partitioning Coefficients:
 - Vapor pressure:
 - Air Sparging/Soil Vapor Extraction (AS-SVE)
 - Thermally enhanced SVE
 - Organic Partitioning Coefficients
 - Activated Carbon
 - Etc

- Chemical transformations
 - Bioremediation
 - Chemical oxidation
 - Chemical reduction
 - Chemical precipitation/Metals stabilization

- Henry's Law
 - Air stripping
 - SVE

A good engineer/scientist can get most technologies to "work." Questions are how well, how efficient and at what cost?

Partitioning Coefficients

Characteristics	Ratio/Comparison	Units	1,4-Dioxane	1,1,1-TCA
Vapor Pressure	Gas - Pure Phase	mm Hg @ 20 °C	29	96
Henry's Law	Gas/Water	atm-m3/mole	4.8 x 10 ⁻⁶	1.8 x 10 ⁻²
K _{ow}	Octanol/water	dimensionless	0.54	302
K _{oc}	Organic Carbon/Water	dimensionless	17	110

EPA Technical Fact Sheet: 1,4-Dioxane, Nov 2017

Watts "Hazardous Wastes: Sources, Pathways, Receptors," Wiley, 1998

😢 PeroxyChem

Air Stripping

Contaminant	Henry's Law Constant (atm- m3/mole @ 25 °C)
1,4-Dioxane	4.8×10^{-6}
TCE	9.1 x 10 ⁻³
1,1,1-TCA	1.8×10^{-2}
1,1-DCE	2.1×10^{-2}
1,2-DCA	9.1×10^{-4}

- 1,4-Dioxane favors the aqueous phase
- Treatment would require large systems

NOT FAVORABLE

Vapor Extraction

- Pure phase vapor extraction
 - 1,4-dioxane has lower vapor pressure than many other contaminants
 - Less efficient treatment possible

Contaminant	Vapor Pressure (mm Hg @ 20°C)
1,4-Dioxane	29
TCE	58
1,1,1-TCA	96
1,1-DCE	495
1,2-DCA	64

- Soil Vapor Extraction (SVE)
 - 1,4-Dioxane also partitions into moisture in soil
 - Effectively air stripping
 - NOT FAVORABLE
- Extreme SVE
 - Increase temperature
 - Beneficial non-linear response
 - Increase PVs flushed
- Not expected to be common remedy but a level of treatment likely

Sorption Technologies

- 100% of "typical" carbon requirement
 - 99% 1,4-dioxane on carbon at equilibrium
- Carbons are expected to act differently
 - Need to consider sorption capacity
 - 1,4-dioxane capacity low compared to most other contaminants
 - Low efficiency treatment possible
- Specific sorbents
 - DOW Ambersorb563[™]
 - >99% removal observed
 - Higher capacity

Bioremediation

- Aerobic co-metabolic treatment
 - i.e-Propane, ethane, isobutane, etc
- Aerobic-direct treatment
 - Bench scale evidence
 - Specific microbes
- Anaerobic
 - Still needs to be proven

- Kinetics:
 - Aggressive biosystem
 - Half life: "days"
 - Less aggressive system
 - Half life: "months"
- Common co-contaminants found to inhibit:
 - 1,1-DCE>TCE>TCA
- Common co-contaminants may not be treated
- Has promise as a remedy, but likely very complex, potential inhibition

Chemical Oxidation

Activated Persulfate

Excellent

Hydrogen peroxide

Excellent

Ozone

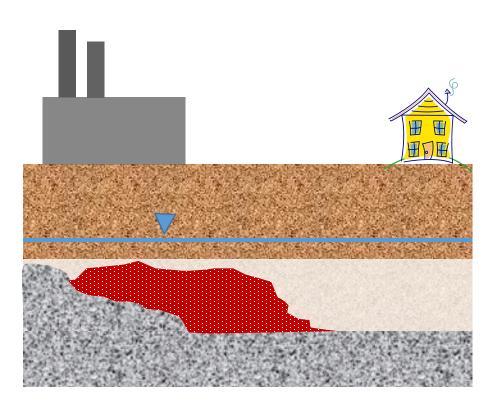
Excellent

Radical	Reaction Rate
Hydroxyl Radical	3.1 x 10 ⁹
	2.5 x 10 ⁹
Sulfate Radical	7.2 x 10 ⁷
	1.6×10^7

- Permanganate
 - Limited kinetics (half life of ~1 month at ~10 g/L)

Certain activation methods for persulfate and hydrogen peroxide are known to also treat 1,1,1-TCA, DCA(s), TCE and DCE

Treating 1,4-Dioxane



Design Fundamentals

Sufficient reagents

Establish contact

Chemical oxidation, reduction, and bioremediation work by establishing contact between a sufficient mass of reagents with the contaminant mass in the subsurface

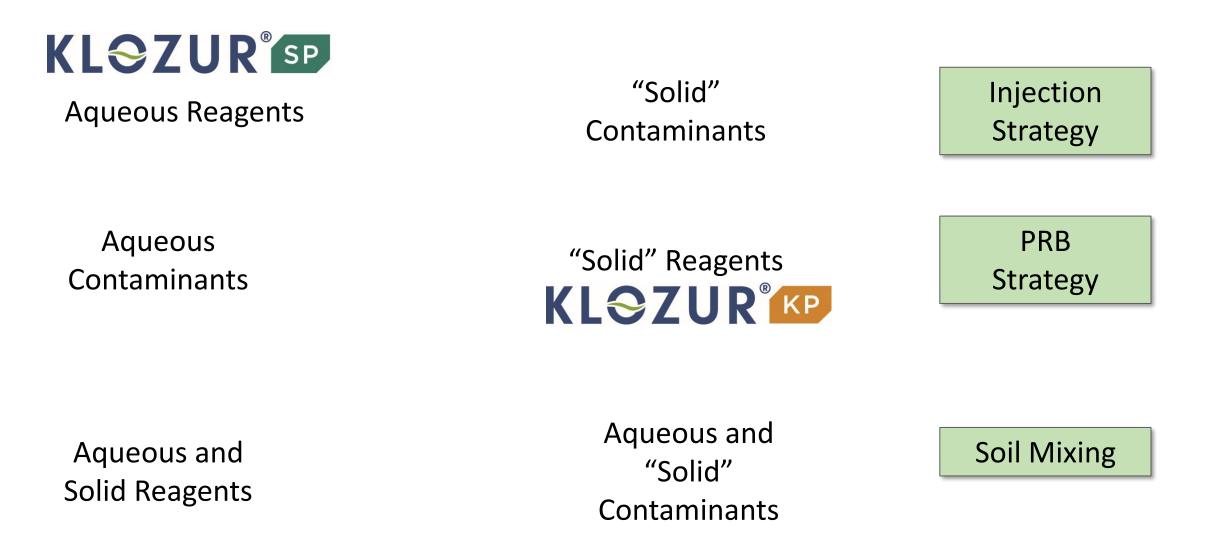
Sufficient Mass

- All transformative technologies (ISCO, ISCR, Bioremediation, etc) work by:
 - Adding a sufficient mass of reagents for the mass of contamination
 - Establishing contact of that mass with the contaminant
- Transformative technologies will react with:
 - Target demand
 - Non-target demand
- No system is completely efficient = Safety Factors
 - Remediation has inherent uncertainties (contaminant mass, contaminant distribution, reagent distribution, etc)
 - Application of reagents

Establishing Contact

- Contact is critical for chemical reaction to occur.
- Number of contaminant molecules and oxidant radicals influence potential contact in the aquifer.
- Contaminant partitioning between soil and groundwater largely dependent upon fraction of organic carbon on soil (F_{oc}).
- 1,4-Dioxane tends to be in aqueous phase more than other contaminants.

- Reagents and contaminants must contact each other
 - Contamination on soils
 - Injection or soil mixing of reagents
 - Contamination in groundwater
 - Permeable reactive barriers (PRBs)
 - Transects or source areas
 - Injected or trenched
 - Recirculation
 - Pull-push
 - Injection (can work, but may displace some GW)



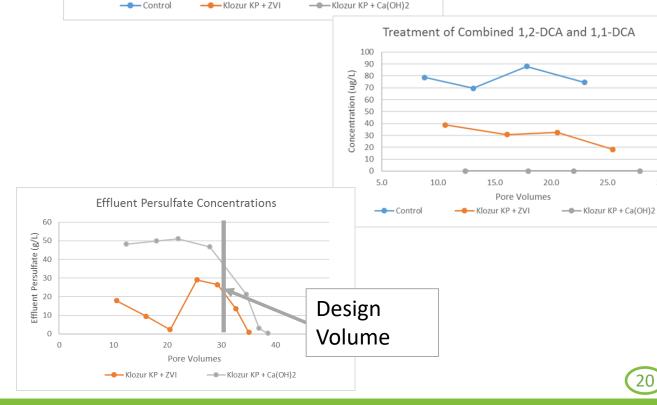
PeroxyChem

Establishing Contact

Case Study

Former Industrial Facility in the Northeast

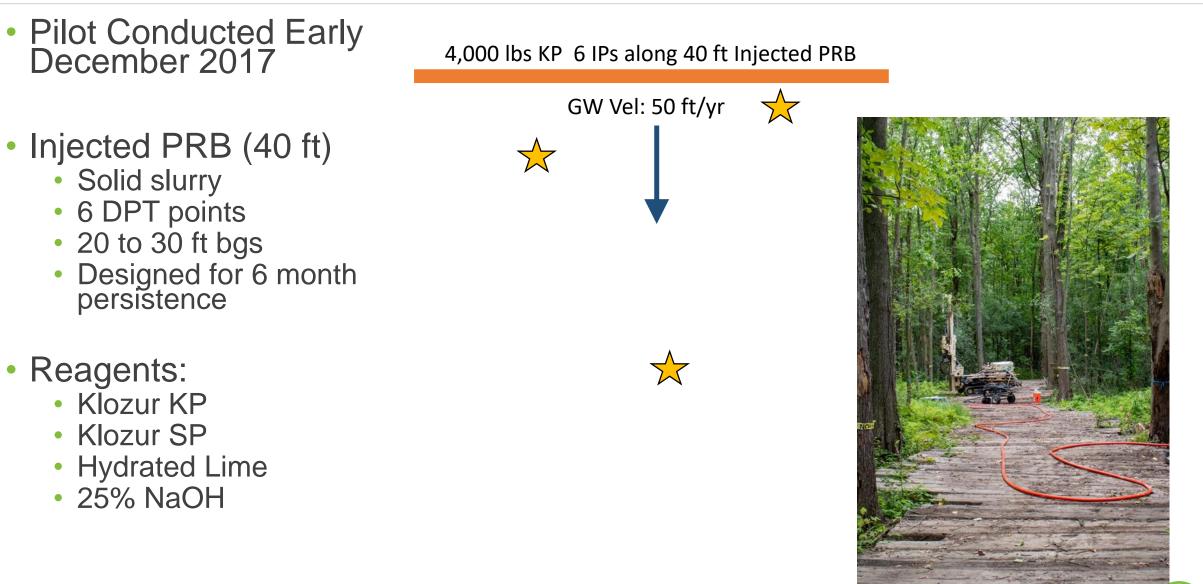
- Consultant: AECOM
- Residual 1,4-dioxane, TCA, and TCA daughter products
 - 1,1,1-Trichloroethane and 1,1,2-Trichloroethane (TCAs)
 - 1,1-DCA and 1,2-DCA
 - 1,1-DCE
- Silty soils with sand lenses
- Klozur KP PRB selected to establish contact with aqueous phase reagents



Klozur KP: Column Bench Test

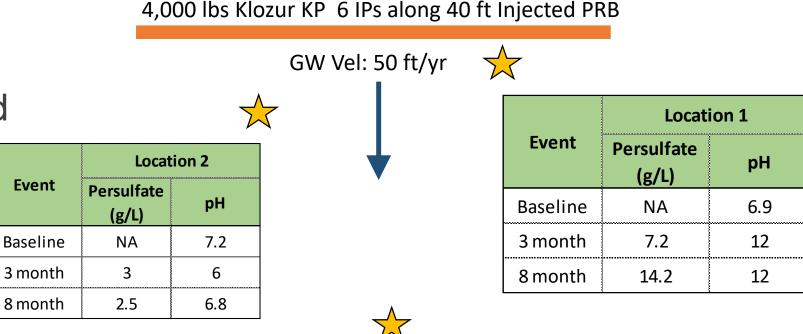
30.0

- Treatment of 1,4-Dioxane 200 180 1) Oxidative pathway Concentration (ug/L) 100 100 100 00 0 0 0 0 0 0 0 0 1,4-Dioxane 20 0 5.0 10.0 15.0 20.0 Pore Volumes 2) Reductive Pathway Control ——Klozur KP + ZVI DCA(s)
- 3) KP persisted intended30 PVs


25.0

30.0

Pilot Study



Persistence and Distribution

- Monitoring wells downgradient in targeted vertical interval:
 Location 1 (~3 ft)
 - Location 1 (~30 ft)
 Location 2 (~10 ft)
 - Location 3 (~25 ft)

	Location 3			
Event	Persulfate (g/L)	рН		
Baseline	NA	7.2		
3 month	NA	NA		
8 month	8	6.5		

😫 PeroxyChem

Event

Baseline

3 month

6 month

			4,000 lbs	Klozur KF	IPs along 40 f	ft Injected	PRB				
					/ Vel: 50 ft/yr	• 🛧					
				\checkmark			L	ocation 1: Con	taminant Conce	entrations (μg/L)
			Event	DCA	DCE	1,4-Dioxane	VOCs*	Reduction			
Loca	tion 2: Conta	aminant Conce	entrations (µg/L)			DCA	DCL	1,4-Dioxane	VOCS	VOCs (%)
~ ^	DOF	1 A D'	V0C-*	Reduction		Baseline	21	40	30	115	0%
CA	DCE	1,4-Dioxane	VOCs*	VOCs (%)		3 month	0.2	nd	nd	0.2	99.8%
14	72	55	184	0%		6 month	0.2	nd	nd	0.2	99.8%
10	11	nd	26	86%		* Detected VOCs	not inclue	lingacetone	8		8
		1		1							

* Detected VOCs not including acetone

DCA

44

10

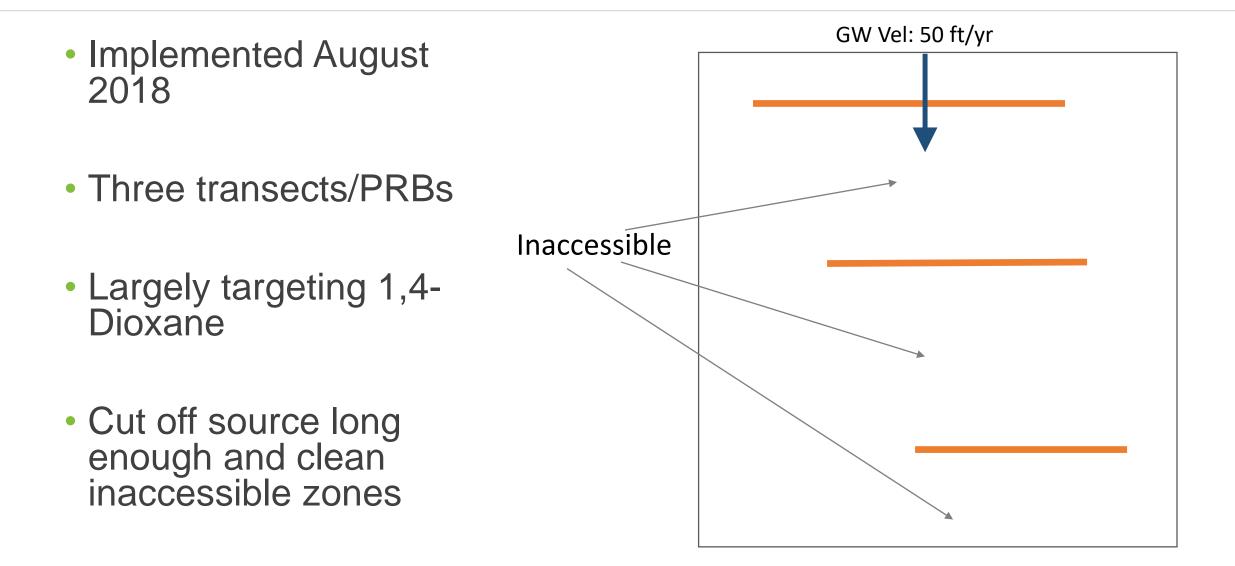
16

nd

	Location 3: Contaminant Concentrations (μ g/L)							
Event	DCA	DCE	1,4-Dioxane	VOCs*	Reduction VOCs (%)			
Baseline	89	270	200	610	0%			
3 month	46	82	69	216	65%			
6 month	63	30	110	230	62%			

* Detected VOCs not including acetone

82%


34

16

- Current technologies for 1,4-Dioxane
 - Primary
 - Sorption-resins
 - Chemical oxidant
 - Developing
 - Bioremediation
 - Have been tested:
 - Extreme SVE

- 1,4-Dioxane is different from most contaminants
 - Affinity for water
 - Typically co-mingled
- Treatment is more than technologies
 - Establish contact
 - Sufficient reagents at all times
- Treatment of 1,4-Dioxane and co-mingled contaminants is ongoing

Questions

Patrick Hicks Patrick.hicks@peroxychem.com

